A Constraint Satisfaction Approach to Data-Driven Implementation of Clinical Practice Guidelines

Craig Kuziemsky
Wojtek Michalowski
Ken Farion
Dympna O’Sullivan
Szymon Wilk

MET Research Group
University of Ottawa
www.mobiledss.uottawa.ca

AMIA Annual Conference
November 12, 2008
Outline

1. Clinical practice guidelines (CPG)
   - Main research directions
   - Issues
2. Representation of CPG as a constraint satisfaction model
3. Methodology
   - Three steps
   - Example using CAEP pediatric asthma guideline
4. Future work
1. Clinical Practice Guidelines

- Emerged out of need to reduce patient management variability, control costs, improve patient outcomes
- Aimed to provide evidence for use at point of care
- Mostly represented as tables or flowcharts
Guideline Modeling Languages

- Represent processes/states through primitives – action step, patient state, decision step, case step
- A process model determines factors such as temporal order or nesting of guidelines
- Underlying data model that provides the detail or domain knowledge for the guideline
Table 1. Representation primitives for actions, decisions, patient states, and execution states in the reviewed guideline representation models.

<table>
<thead>
<tr>
<th>Guideline Models</th>
<th>Actions</th>
<th>Decisions</th>
<th>Patient States</th>
<th>Execution States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arden Syntax</td>
<td>action slot</td>
<td>logic slot</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>DILEMMA/PRESTIGE</td>
<td>protocol</td>
<td>state transition</td>
<td>n/a</td>
<td>procedure state</td>
</tr>
<tr>
<td>EON/DHARMA</td>
<td>action, activity</td>
<td>decision</td>
<td>scenario, activity state</td>
<td>no</td>
</tr>
<tr>
<td>PROforma</td>
<td>action, enquiry</td>
<td>decision</td>
<td>n/a</td>
<td>task state</td>
</tr>
<tr>
<td>Siegfried</td>
<td>recommendation</td>
<td>logic</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>GLIF</td>
<td>action step</td>
<td>decision step</td>
<td>patient state step</td>
<td>no</td>
</tr>
<tr>
<td>Azbru</td>
<td>plan</td>
<td>condition, preference</td>
<td>temporal patterns</td>
<td>plan state</td>
</tr>
<tr>
<td>GUIDE/PatMan</td>
<td>task, wait, monitor</td>
<td>decision</td>
<td>(implicit in Petri Net)</td>
<td>n/a</td>
</tr>
<tr>
<td>PRODIGY</td>
<td>action, activity</td>
<td>decision</td>
<td>scenario</td>
<td>n/a</td>
</tr>
<tr>
<td>GASTON</td>
<td>action</td>
<td>decision</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Toino</td>
<td>work action, query action</td>
<td>decision action</td>
<td>conclusion</td>
<td>n/a</td>
</tr>
</tbody>
</table>

n/a: information not available from the publications

§ EON/DHARMA and GLIF has execution states, but they are not in the guideline representation model
Issues

• Difficult to use in presence of missing data
• A gap between guidelines representation and clinical implementation (Waitman and Miller 2004)
• Need to cater to different levels of clinical decision making expertise?
Extending CPG Research

- Develop a data-driven model that works with incomplete patient data
- Develop a flexible model that permits site-specific customization
- Expand the patient state step for more comprehensive decision making
Clinical Use

Initial Patient State

Verified Patient States

Data

Missing Data

Data

Application of the CPG
2. A Constraint Satisfaction (CSP) Model

- Constraints define allowable relationships between (variable, value) pairs
- Vector of incomplete (variable, value) pairs (available patient state data) is an input to a model
- Solutions (possible patient management paths) built on the input vector are generated
3. Three Step CSP Approach

- Clinician collects patient data pertinent to patient state
  - Step 1 – Use patient state data to solve the CSP for a feasible solution(s); – if they exist, present them, otherwise identify reason for infeasibility, remove the violating (variable, value) pair(s) and create a revised patient state model
  - Step 2 – use the revised patient state data to solve the CSP to determine all feasible solutions
  - Step 3 – Order the feasible solutions
- The feasible solution is presented to the clinician with a description of what (variable, value) pairs are needed to instantiate the solution
Clinical Example - CAEP Pediatric Asthma CPG

- Created for ED management to determine severity of pediatric asthma exacerbation (mild, moderate, severe) using 8 clinical signs and 3 clinical measurements.

- Issue: how to use asthma CPG in light of incomplete patient data?

- Example: only 5 assessments are done and a diagnostic decision of mild exacerbation is made (patient state):
  - Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Typical_episode(worse), Exacerbation(mild)
CSP Model Development

• Variables and their domains
  
  Dyspnea [exertional, at_rest, labored], Beta_agonist [good_response, partial_response, weak_response, no_response], Difficult_speech [absent, moderate, present], Tachycardia [absent, present], etc.

• Constraints
  
  • Unary partial-patient-descriptor: Dyspnea(exertional) AND Exacerbation(mild)
  
  • Complete-patient-descriptor: Dyspnea(at_rest) AND Beta_agonist(partial_response) AND Difficult_speech(absent) AND Tachycardia(absent) AND Tachypnea(at_rest) AND Accessory_muscles(no) AND Breathing_sounds(reduced) AND Typical_episode(same) AND SaO2(92_95) AND PEV(50_75) AND FEV(50_75) AND Exacerbation(moderate)

• Feasible solution
  
  • Any set of (variable, value) pairs that satisfies complete-patient-descriptor constraints and meets the unary constraints
Three Step Approach – Step 1: Consistency Check

• **Input vector:** Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Typical_episode(worse), Exacerbation(mild)

• **Check if all input (variable, value) pairs satisfy unary constraints**

    Typical_episode(worse) does not satisfy:

    Typical_episode(better) AND Exacerbation(mild)
    Typical_episode(same) AND Exacerbation(mild)

• **Variable** Typical_episode **is removed from the patient state to create revised input vector:** Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Exacerbation(mild)
Step 2: Solve a Model

- For revised input vector use backtracking to solve the CSP for all feasible solutions

- Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscules(none), Breathing_sounds(normal), Typical_episode(better), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)

- Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscules(none), Breathing_sounds(reduced), Typical_episode(better), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)

- Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscules(none), Breathing_sounds(normal), Typical_episode(same), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)

- Dyspnea(exertional), Beta_agonist(good_response), Difficult_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscules(none), Breathing_sounds(reduced), Typical_episode(same), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)
Step 3: Order Feasible Solutions

- Feasible solutions are ordered according to ascending conflict value for conflicting (variable, value) pairs in the original input vector (Step 1)
  - Typical_episode(worse) conflicts with Typical_episode(same) and Typical_episode(better);
  - Assuming that better>same>worse, ordered presentation is:
    1. Dyspnea(exertional), Beta_agonist(good_response), Difficulty_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscles(none), Breathing_sounds(normal), Typical_episode(same), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)
    2. Dyspnea(exertional), Beta_agonist(good_response), Difficulty_speech(absent), Tachycardia(absent), Tachypnea(exertional), Accessory_muscles(none), Breathing_sounds(reduced), Typical_episode(same), SaO2(>95), PEV(>75), FEV(>75), Exacerbation(mild)

- Ordering suggests that patient with mild exacerbation has current episode the same as typical episode from the past. Discrepancy with the original input value should prompt MD to re-evaluate clinical assessments or diagnosis
4. Future work

- Develop the heuristic to rank the feasible solutions
- Create the generic CSP model to represent patient state step in the CPG
- Apply reasoning to the model to infer likely management paths (use predicate logic and Logic-based Truth Maintenance System to facilitate induction)
- Conduct usability study with clinicians at Children’s Hospital of Eastern Ontario (CHEO)
Thank you

Please visit us at:

www.mobiledss.uottawa.ca