Triaging Pediatric Abdominal Pain in the ED
Could the Answer Be in the Palm of Your Hand?

Ken Farion
Emergency
Outline

• Dilemmas assessing children with abdominal pain
• Clinical Decision Support Systems
 – What are they?
 – How could they help?
• Development of MET-AP
• MET-AP validation trial
• The future . . .

November 14, 2003
Kids and Abdominal Pain

• common presenting complaint
 – 3300 patient visits per year
 – 8-10 patients/day
 – other patients presenting with other complaints
 • significant abdominal pain found during assessment
• large number of outside referrals
 – “R/O Appendicitis”
Assessing Abdominal Pain

- large differential
 - constipation and gas pains most common
 - associated “tummy ache” with most viral illnesses
 - appendicitis most common surgical problem
- history and description of pain often incomplete
- physical exam can be difficult
 - apprehension
 - “ticklish”
Assessing Abdominal Pain

• normal WBC doesn’t rule out pathology
• imaging - Ultrasound
 – not readily available after hours
 – many inconclusive studies
 • “can’t visualize the appendix”
 – time-consuming and costly
 • “Can’t U/S them all!”
Appendicitis Scores

• several versions out there
• some appear to perform well
 – Cut-off 6/10 Sens 1.0, Spec 0.92, PPV 0.96, NPV 0.99
• pretest selection bias
 – referred to surgery as R/O appendicitis
• many not prospectively validated
 – tested on those undergoing laparotomy
Assessing Abdominal Pain

- Time-consuming process
 - average arrival to MD 60-90 minutes
 - average MD to disposition 150-180 minutes
 - 55% have lab, 26% have imaging
Kids admitted with AP

- 240 admitted with appendicitis
- 300 more admitted with other causes
 - 100 discharged as “Adb Pain NYD”
- Average LOS in ER
 - All AP patients 210-270 minutes
 - Appendicitis >300 minutes
 - Other causes >380 minutes
How can we do better?

- Make an accurate disposition decision earlier
 - avoid tests/observation time that delays
 - consulting the surgeon for those with appendicitis
 - discharging those with benign problems
- Clinical Decision Support System
Clinical Decision Support

• Multiple definitions/applications
 – capturing clinical data on which to base
 • program/operational decisions
 – financial data (cost of doing business)
 – increasingly tied to clinical outcomes
 • point-of-care clinical decisions
 – for individual patients
 – may include tools for the patient
Potentials for CDSS

• Increase health care quality
 – change clinician behaviors by promoting EBM
 • literature-based evidence
 • local practice-based evidence
• Increase health care efficiency
 – standardize care/reduce variation
• Reduce medical errors
 – built-in safety net
Examples of CDSS

- Alerts
 - highlighting out-of-range lab values
 - patient ready for R/A
- Reminders
 - patient due for next vaccination
- Critiquing
 - screening in CPOE for drug interactions
- Interpretation
 - ECG
Examples of CDSS

- Predicting
 - risk of mortality from a severity-of-illness score

- Diagnosis
 - listing a differential diagnosis based on the patient’s symptoms and findings

- Assisting
 - calculating adjusted drug dosages for renal function

- Suggestions
 - analyse recent PTT make suggestions heparin dosing to keep PTT in therapeutic range
ISABEL

- web-based differential diagnosis aid for Peds
- information retrieval engine
- matches patterns within unformatted text
- uses standard pediatric textbooks as source
- produces a differential diagnosis based on clinical features entered

www.isabel.uk.org

- remind the clinician of potentially important diagnoses
Leeds, UK Project

- Computer-based diagnosis for abdominal pain
- multiple studies since 1972
- computer database of known patients
- analyzed using Bayesian theory
- structured data collection form, entry into a computer, and feedback mechanism
- baseline rate of initial diagnostic accuracy 45%
 - improves to 57% with structured data collection
 - improves to 65% with whole system
 - post-investigation accuracy also improves
- 1998 estimated cost savings £25m /yr NHS
• Mobile Emergency Triage (MET)
• Developed with the following goals
 – improved data collection
 – assist physician decision-making
 – promote earlier, more accurate triage/disposition decisions
 – NOT a diagnostic test
• Defined three distinct categories of patients
 – appendicitis
 – benign or resolving causes (constipation, viral)
 – other pathology

• Corresponding triage dispositions
 – consult surgery
 – D/C home with F/U prn
 – continue to investigate/observe
MET-AP CDSS

- retrospective data collection
- >700 patients with abdominal pain
- large number of attributes
 - history
 - physical exam
 - investigations
- each patient assigned to one category
• Data mining to find patterns that discriminate between the three categories
 – Rough sets
 – Shapely fuzzy values

• Answer the following questions
 – which attributes are most relevant for the discrimination process?
 – what is the relationship between the attribute and the final decision category?
• **Result**
 – series of *if ... then ...* statements
 – relative weighting of how strongly a given patient matches each of the three decision categories

• **Recommendation can be made despite incomplete data**
 – more data \(\rightarrow \) more accurate recommendation
• 13 attributes identified
 – Demographics
 • age, gender
 – History
 • location of pt’s complaint, duration, constant vs intermittent, vomiting, previous ER visit
 – Physical exam
 • temperature, location of maximal tenderness, rebound, guarding
 – Investigations
 • WBC
MET on Palm

- PDA technology ideally suited
 - takes the “computer” to the bedside
 - quick, easy data entry
 - built-in Sync functionality
 - maintain data centrally
 - communicate with other hospital IT systems
 - transfer patient data between users
 - new generation ready for wireless
MET Architecture

- **MET Server**
 - communication server
 - database server
 - decision algorithm and application server

- **MET Handheld**
 - triage support
 - data collection

- **MET PC Client**
 - MET patient data management

- **Patient Data Repository**
MET on Palm

• Programmed on Palm OS
 – patient database
 – data collection tool for entry of attributes
 – >200 algorithmic steps to produce a triage recommendation
MET-AP Screens

Patient: Peterson, James

Hx History
- Site of Pain: RLQ
- Duration of Pain: 5h 30min
- Type of Pain: Intermittent
- Shifting of Pain: Yes
- Previous Visit: No
- Vomiting: Yes

Physical Exam
- Site of Tenderness: RLQ
- Rebound: No
- Loc. Guarding: Yes
- Temperature: 38.7°C

Tests
- WBCC: 6.0 x 1000

November 14, 2003
MET-AP Screens

Patient: Peterson, James

Site of Pain:
- RLQ (checked)
- Lower Abd. (unchecked)
- Other (unchecked)

Duration of Pain: 5h 30min
Type of Pain: Intermit.

Shifting of Pain: Yes (checked)
No (unchecked)

November 14, 2003
Prospective Validation Trial

- Retrospective pilot shows promise
- Could it be used in real practice?
- What is the accuracy of MET in real practice?
- What is physician accuracy and is MET better or worse?
- Could we quantify the potential benefits/costs?
Retrospective Pilot Data

<table>
<thead>
<tr>
<th>MET Recommendation</th>
<th>Final Diagnosis</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign</td>
<td>Appendicitis</td>
<td>Other</td>
<td>Totals</td>
<td></td>
</tr>
<tr>
<td>Discharge/ Follow-up FD</td>
<td>45</td>
<td>1</td>
<td>2</td>
<td>48 (41%)</td>
<td></td>
</tr>
<tr>
<td>Surgery Consult</td>
<td>8</td>
<td>34</td>
<td>1</td>
<td>43 (37%)</td>
<td></td>
</tr>
<tr>
<td>Further Investigation</td>
<td>7</td>
<td>2</td>
<td>17</td>
<td>26 (22%)</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>60 (51%)</td>
<td>37 (32%)</td>
<td>20 (17%)</td>
<td>117 (100%)</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>45/60 (75%)</td>
<td>34/37 (92%)</td>
<td>17/20 (85%)</td>
<td>96/117 (82%)</td>
<td></td>
</tr>
</tbody>
</table>

November 14, 2003
How reliably can MET-AP triage pediatric ED patients with acute abdominal pain to one of three disposition categories corresponding to three final diagnosis categories?
Objectives

• To determine the proportion of patients in which
 – MET-AP (trainee, staff) recommendation
 – ED personnel (trainee, staff) prediction
 agrees with the final diagnosis category.
• To compare these proportions to see if there is a difference
 between MET-AP and ED personnel performance
• To determine inter-observer agreements between staff and
 trainees for patient attributes
• To descriptively estimate potential cost savings of following
 MET-AP recommendation
• To compile a prospective data set on which to improve the
 algorithm’s accuracy
Trial Design

- prospective cohort study
- recruit patients with acute abdominal pain presenting to our ED
- 24/7 recruitment by triage/registration/resident/staff
- informed consent to collect patient data and make follow-up telephone call
- where possible – 2 independent observations by staff/resident or resident/staff
Trial Design

• all personnel blinded to MET-AP recommendation
 – only revealed after patient assigned a final category
• patients followed until final category established
 – review of patient chart
 – telephone follow-up about ongoing symptoms, outpatient investigations/management
Sample Size

- Literature estimates physician accuracy at 50%
 - assume trainees are, at best, similar
- MET-AP likely better (pilot data)
- To estimate staff accuracy to within 5%, 19 times out of 20, requires 384 patient assessments
 - trainees and MET-AP require smaller numbers
- Since we want 384 patients with assessments by both staff and trainees and assuming 60% inter-observer rate -> 640 patients
Trial Version of MET-AP

• Trial computer receives all patient demographics from hospital ADT system
• Separate trial management system overlying MET
 – manage lists of current patients
 – inclusion/exclusion criteria on palm
 – capture physician prediction of patient’s triage category
 – keep MET-AP recommendation blinded
 – record all follow-up information
Kick-off

• PSI funding awarded Mar 2003
• Patient enrollment started July 2nd
• Orientation to the palm
 – 17 FT staff
 – 5 fellows
 – >20 PT staff
 – >50 residents
Numbers to Date

- 340 patients enrolled
 - 123 staff physician only
 - 78 resident only
 - 141 both (41% inter-observer)
- Analysis of 230 patients with completed F/U
 - accuracy of MET-AP (staff) 66%
 - 2x2 appendicitis vs not appendicitis
 - Sens 65%, Spec 85%, Accuracy 82%
The Future . . .

- Multiple potential paths for this work
 - MET-AP
 - refining the CDSS based on prospective data
 - implementation and testing in different settings
 - community physicians/ED’s
 - physician acceptance and how they use the recommendation
 - effects on patient outcomes and economic analysis
 - Other clinical problems
 - Scrotal pain (MET-AS) and Hip pain (MET-HP)
 - Asthma/Bronchiolitis decision to D/C vs LS vs admit
 - Adult problems
The Future...

- Multiple paths
 - Other platforms – seamlessly integrated
 - wireless environment
 - Pocket PC, tablets
 - digital phones
 - Web-based
 - Integration with EHR
 - running in the background
 - eliminates duplicate data collection
 - self-adapting as the system is now also linked to outcome
Thank you

• Please visit us at:

www.mobiledss.uottawa.ca