Bayesian Belief Network Model of a Clinical Caremap: Implementation of the Radical Prostatectomy Caremap in MET Support Environment

Wojtek Michalowski
University of Ottawa, Canada

Szymon Wilk
Poznan University of Technology, Poland

Mingmei Li
University of Ottawa, Canada

Dawid Weiss
Poznan University of Technology, Poland
Outline

☐ Clinical Caremap
☐ Bayesian Belief Network (BBN)
☐ Radical Prostatectomy Caremap (RPC)
☐ BBN Model for RPC
☐ MET Decision Support Environment
☐ Mobile Caremap Monitor (MCM) – Implementation Using Ontological Engineering
☐ Discussion
Clinical Caremap

- Represents sequencing and timing of interventions for a particular clinical presentation
- Designed to minimize delays and resource utilizations and to maximize the quality of care
- Used to monitor and control patient’s progress measured according to standard process and clinical outcomes, e.g., length of stay (LOS)

Radical prostatectomy caremap (RPC) describes patient’s management from a post-op to a fourth day of stay in the hospital
Bayesian Belief Network (BBN)

- Models a stochastic process composed of the events with associated conditional probabilities and relationships between these events.
- Generates an answer to conditional-type queries, e.g., considering the patient’s health status on a given day, what impact would X have on meeting the expected day of discharge
BBN Model for the RPC – Variables

- **Independent variables describing the patient’s state on a specific post-op day**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychological condition</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital signs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Temperature</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity with the RPC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition with the RPC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition outcome</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain at rest</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory function</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Evidence of hematuria</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel sounds</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain with mobility</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Dependent variable describing clinical outcome**
 - LOS (*met* if 4 days or shorter, *delayed* otherwise)
BBN Model for the RPC – Knowledge Discovery

☐ Learning data set
- 75 patients managed by various clinical teams between 2002 and 2003 at the Ottawa Hospital – Civic Campus
- Data transcribed from patient’s files and evaluated by urology specialists for consistency and correctness

☐ Learning method
- K2 algorithm (implemented in Bayesware Discoverer) used to build the BBN structure and calculate the conditional probabilities
BBN Model for the RPC – Structure
BBN Model for the RPC – Verification

- Testing data set
 - 50 patients managed by various clinical teams between 2002 and 2003 at the Ottawa Hospital – Civic Campus
 - Independent from the learning set
 - Data reviewed according to the same regimen as learning data set

- Test results:
 - Overall accuracy: 82%
 - Accuracy for predicting LOS \textit{met}: 90%
 - Accuracy for predicting LOS \textit{delayed}: 65%
Decision support environment for applications supporting various clinical decision problems

- Triage of acute pain (abdomen, scrotum, hip)
- Triage of asthma exacerbations

- Easily adaptable to support any other clinical decision problem

- Accessible on a variety of computing platforms when and where required – ubiquitous support

- Designed according to the anytime & anywhere architecture (A³)
A³ Architecture

- Relies on logical models of domain, support and system components and models of access platforms
- Specific applications (for a given decision problem and access platform) are rendered on demand from these logical models
- Logical models are represented as ontologies divided into several areas (referring to specific models)
 - Domain (patients, episodes, presentations)
 - Support (decision models and solvers)
 - System (user interface and application modules)
Mobile Caremap Monitor (MCM)

- New application within the MET environment
- Allows estimating variances from the RPC
- Easily expandable to support caremaps for other clinical presentations

- Ontological model for the MCM is built from the MET generic ontology and specialized for the RPC
Ontological Model of the MCM – Structure
Ontological Model of MCM – Description

☐ Domain
 ■ A single patient can have several episodes (e.g., visits in the ED or hospitalizations)
 ■ Each episode is bound to a single clinical presentation

☐ Support
 ■ Decision model contains the knowledge necessary to support a clinical presentation
 ■ Solver instantiates model using actual data to arrive at a solution
 ■ Attribute mappers pre-process values of attributes according to the requirements of decision models
Ontological Model of MCM – Description (2)

- System
 - Editing modules manage user interface for presenting and modifying patient’s data
 - Support modules provide support functionality for clinical presentations
 - User interface renderers lay-out and manage logical screens
 - Logical screens group and manage several attribute editors
 - Attribute editors bind specific widgets (editing tools) to specific attributes
MCM in Action - Desktop computer

All attributes can be presented at once and „inlined” owing to a large display.
MCM in Action – Handheld Device

Tabs and pop-up dialogs are used to fit the interface on a small display.
Discussion

- BBN adequately models the RPC and very well describes probabilistic inferences, as verified on testing data set
- MET decision support environment is rich enough to include the MCM
- Ontological engineering provides necessary high level abstract models to capture intertwined nature of clinical domain description and clinical domain support
Acknowledgments

- People
 - Dr. Anthony Thijssen, The Ottawa Hospital, Civic Campus
 - Mikołaj Antoniewicz, Poznan University of Technology

- Sponsor
 - NSERC
Thank You

Visit us at:
http://www.mobiledss.uottawa.ca