MET: Mobile Emergency Triage Decision Support for the Clinical Environment

Ken Farion, MD FRCPC
Pediatric Emergency Medicine
Children’s Hospital of Eastern Ontario

Wojtek Michalowski, PhD
School of Management
University of Ottawa
Outline

- Clinical workflow
- Ubiquitous computing
- **MET** Clinical Support Environment
- Clinical trial of **MET-AP**
- Discussion
Clinical Workflow in the ED

- Prioritization
- Registration
- Nursing Assessment
- Physician’s Assessment
- Admission
- Investigation/Observation
- Discharge
- Closure of Visit
Clinical Workflow: Implications

- Different members of clinical staff have different functions – prioritization, assessment, treatment
- Different members of clinical staff require different levels of support – general to patient-specific
- Different members of clinical staff require support in different locations and at different times – from the bedside to the office, from on-line to off-line
- Ubiquitous Clinical Decision Support Systems (uCDSS)
Requirements

- Simultaneous and diversified support for multiple users and multiple patient management problems
- Different access platforms – depending on the clinical presentation, location of the user, and nature of support
- Seamless integration with hospital IS
Specifications

Developing a customized system for each possible combination of:

- clinical problem
- end-user
- platform

is not an answer

Anytime & Anywhere Architecture (A³)

- Allows to create a temporal, customized software module to match the user’s need for specific support of a particular clinical problem, regardless of the platform or location
A³ – *Anytime & Anywhere* Architecture

- A way of writing specifications and developing support systems, based on models of system components

- It consists of problem models (domain model, interface model, decision model, DM model) and platform models. Customized support system (problem/platform) is rendered from these logical models
MET Clinical Support Environment

- Supports triage of different acute conditions
 - Acute pain (abdominal, scrotal, hip)
 - Asthma

- Provides support at the bedside

- Runs on a variety of platforms (handheld, tablet and desktop computers)

- Successfully tested in hospital during a clinical trial
Request to support triage of scrotal pain (SP) coming from a physician using handheld
MET Implementation

- **MET server**
- **Wireless or wired synchronization**
- **Electronic health records**
- **Protege for ontological editing of problem models**

MET clients

- **SOAP**
- **Database / XML**
- **HL7 protocol**

Platforms
- Desktop
- Pocket PC
- Smartphone
- Palm
MET Interactions: Aligning With Workflow
MET Interactions: Natural Mappings #1
MET Interactions: Natural Mappings #2
MET-AP: Abdominal Pain in Children

- Common presenting complaint
 - 6-7% of all patients
 - 3300 patient visits per year or 8-10 patients/day
 - other patients presenting with other complaints
 - significant abdominal pain found during assessment
 - Large number of outside referrals “R/O Appendicitis”
MET-AP: Abdominal Pain in Children

- Large degree of uncertainty
 - Children/parents don’t describe/localize pain well
 - Parental anxiety
 - Experts/medical literature description of patterns is subjective
 - “often”, “sometimes”, “mostly”
- Large list of possible diagnoses
 - Constipation and gas pains most common
 - Associated “tummy ache” with most viral illnesses
 - Appendicitis most common surgical problem
- No definitive, cost-effective, non-invasive test to assess all patients
MET-AP: Abdominal Pain in Children

- Time-consuming process
 - average arrival to MD 60-90 minutes
 - average MD to disposition 150-180 minutes
 - 55% have lab, 26% have imaging
MET-AP Clinical Trial

- Prospective ED cohort study at CHEO recruiting patients 24/7 with acute abdominal pain
- About 150 users (staff physicians and residents) utilizing MET-AP for 8 months
- Evaluation of MET-AP with 574 patients
- Positive feedback from users and patients
Integrating with Hospital’s IS

- EPIC Hospital IS
 - DataGate (HL7 broker)
 - HL7 messages
 - Hospital System 1
 - HL7 messages
 - Hospital System 2
 - HL7 messages
 - Audit and follow-up web-based applications
 - Integration subsystem
 - Sync subsystem
 - Database
 - Mobile client
 - Mobile client
 - Mobile client
 - Audit and follow-up web-based applications

- Database
 - Management subsystem
 - Mobile client
Trial Results

- Analysis of 574 patients with complete F/U
 - Overall accuracy
 - Physicians: 70.2%
 - MET: 67.2%

Other successes

- Integration with hospital IS
- Structured and real-time data collection by physicians
Discussion: mHealth Systems

- Compliance with clinical workflow is essential
- Limited bandwidth of mobile devices
- Legal framework (HIPAA, PIPEDA, Bill 31)
- Security and privacy
- Wireless but not everywhere
- Interference with medical devices
Acknowledgements

Rhonda Correll, Emergency Research Coordinator, CHEO
Greg Forestell, Information Services, CHEO
John Pike, Division of Urology, CHEO
Joanne Ross, Information Services, CHEO
Steven Rubin, Division of Surgery, CHEO
Szymon Wilk, Poznan University of Technology

Jerzy Blaszczyński, MET Research Team
Mathieu Chiasson, MET Research Team
Lisa Dutil, MET Research Team
Nataliya Milman, MET Research Team
Roksana Mottahedi, MET Research Team
Bernard Plouffe, MET Research Team
Leticia Troppman, MET Research Team
David Weiss, MET Research Team
Thank You

Please visit us at:

www.mobiledss.uottawa.ca