Insights from Predicting Paediatric Asthma Exacerbations from Retrospective Clinical Data

William Elazmeh¹, Dympna O’Sullivan¹, Wojtek Michalowski¹, Stan Matwin¹ and Ken Farion²

¹University of Ottawa, Canada
²Children’s Hospital of Eastern Ontario, Ottawa, Canada
Outline

- Prediction Task
- Baseline Results
- Improving Predictions by Employing Secondary Knowledge Sources
 - The PRAM Scoring System
 - Mapping PRAM attributes to our dataset
 - Inferring and Substituting Missing Values
 - Two-Set Approach using ‘Typical’ and ‘Non-Typical’ cases
- Experimental Set Up and Results
- Conclusions and Future Work
What is the Prediction Task?

- Assess pediatric asthma exacerbation with scant available information about patient’s condition (part of clinical DSS)

- New patient should be classified as MILD or OTHER
 - MILD stay in ED for less than 4 hours
 - OTHER (moderate/severe) stay in ED up to 16 hours or are admitted to a hospital

- OTHER is critical class
 - Misclassified OTHER more costly than misclassified MILD
 - Physician’s tend to diagnose conservatively

- Build predictive model that produces:
 - High Sensitivity (reduce number of false negatives)
 AND
 - High Specificity (reduce number of false positives)
Predictions for “OTHER”

- **Sensitivity (O)** = \(\frac{TP_{\text{OTHER}}}{TP_{\text{OTHER}} + FN_{\text{OTHER}}} \)

- **Specificity (O)** = \(\frac{TN_{\text{OTHER}}}{TN_{\text{OTHER}} + FP_{\text{OTHER}}} \)

<table>
<thead>
<tr>
<th></th>
<th>MILD</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>(TN_{\text{OTHER}})</td>
<td>(FP_{\text{OTHER}})</td>
</tr>
<tr>
<td>OTHER</td>
<td>(FN_{\text{OTHER}})</td>
<td>(TP_{\text{OTHER}})</td>
</tr>
</tbody>
</table>
Baseline Results

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Cases</th>
<th>Sens</th>
<th>Spec</th>
<th>Acc</th>
<th>Auc</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>362</td>
<td>73</td>
<td>70</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>J48</td>
<td>362</td>
<td>71</td>
<td>57</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td>NBT</td>
<td>362</td>
<td>72</td>
<td>65</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>LWL$_{NB}$</td>
<td>362</td>
<td>73</td>
<td>70</td>
<td>72</td>
<td>78</td>
</tr>
</tbody>
</table>
Secondary Knowledge Sources

- Use Secondary Knowledge to preprocess data for classification

- Secondary Knowledge Source: PRAM: Preschool Respiratory Assessment Measure

- Applied by mapping attributes from PRAM to corresponding values in our dataset (Not 1-1)

- PRAM was first used to infer likely values for some missing data

- It was then applied to partition data into separate sets for classification
PRAM Scoring System

- Developed for use in pediatric ED
- Uses 5 core clinical attributes to determine asthma severity
- Discriminates severity using a 12-point scoring scale where:
 - 0-4 = MILD
 - 5-8 = MODERATE
 - 9-12 = SEVERE
- For our dataset:
 - 0-4 = MILD
 - 5-12 = OTHER
PRAM Scoring System

<table>
<thead>
<tr>
<th>Signs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suprasternal Indrawing</td>
<td>absent</td>
<td></td>
<td>present</td>
<td></td>
</tr>
<tr>
<td>Scalenene retractions</td>
<td>absent</td>
<td></td>
<td>present</td>
<td></td>
</tr>
<tr>
<td>Wheezeing</td>
<td>absent</td>
<td>expiratory</td>
<td>inspiratory and expiratory</td>
<td>Audible without stethoscope/ absent with no air entry</td>
</tr>
<tr>
<td>Air entry</td>
<td>normal</td>
<td>decreased at bases</td>
<td>widespread decrease</td>
<td>absent/ minimal</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>>= 95%</td>
<td>92%-95%</td>
<td>< 92%</td>
<td></td>
</tr>
</tbody>
</table>
Mapping PRAM to our dataset

- Need to infer some of the values because:
 - No Mapping for PRAM ‘Suprasternal Indrawing’
 - Retractions in our dataset mapped to ‘Scalene Retractions’ in PRAM
 - Exp Wheeze and Insp Wheeze (two attributes in our dataset) mapped to one PRAM attribute, ‘Wheezing’
 - Air Entry in our dataset has 2 values but PRAM ‘Air Entry’ has 4 possible values
 - SAO2 in our dataset maps to PRAM ‘Oxygen Saturation’

- All mappings approved by ED physician
Rules to Compute PRAM Scores

- RETRACTIONS=absent, AIR_ENTRY=good --> 0
- RETRACTIONS=absent, AIR_ENTRY=reduced --> 1
- RETRACTIONS=absent, AIR_ENTRY=? --> 1
- RETRACTIONS=present --> 2

- EXP_WHEEZE=absent, INSP_WHEEZE=absent --> 0
- EXP_WHEEZE=present, INSP_WHEEZE=absent --> 1
- EXP_WHEEZE=present, INSP_WHEEZE=present --> 2
- EXP_WHEEZE=absent, INSP_WHEEZE=present **** Undefined

- AIR_ENTRY=good --> 0
- Class=mild, AIR_ENTRY=reduced --> 1
- Class=other, AIR_ENTRY=reduced --> 3

- SAO2=ge_95 --> 0
- SAO2=ge_93_lt_95 --> 1
- SAO2=ge_88_lt_93 --> 2
- SAO2=lt_88 --> 3
Dataset as Divided by PRAM Scores

Original and Complete Dataset: 362

PRAM Incorrect: 9

PRAM Instances: 147

Non-PRAM Instances: 180

PRAM Borderline: 26
Computing Missing Values using PRAM – Experimental Design

- Extracted complete and correct PRAM cases
- Attempted to mine rules from these examples with which to perform substitution of other PRAM values
- Tried association rules, but were either empty (none) or involved too many attributes (very few examples to sufficiently support the rules)
- Therefore, used simple logical (rule-based) classifiers for substitution
- Re-ran original classifiers on substituted data
- Substitution, however did not significantly improve results
Using PRAM Scores for Classification

- Observation from applying PRAM scores:
 - PRAM is a very reliable identifier of ‘typical’ cases
 - How about using PRAM as a classifier?
Two Set Approach

- Inspired by Two-Tiered Approach:

- Set is partitioned based on concept representation where the first set captures explicitly basic concept properties, and second set characterizes allowable concept modifications
Two Set Approach – Our Dataset

- PRAM complete and correct cases are ‘typical’ and correspond to the first set (PRAM set)
- All other cases (PRAM incomplete and PRAM incorrect) are ‘atypical’ and correspond to the second set (Non-PRAM set)
- Build a classifier for each outlined set
- For each new case must decide which set to assign it to (achieved by a meta-classifier)
Two Set Approach – Our Dataset

Strategy is: Leave one out cross validation
Two Set Approach – PRAM Set

- All classifiers work well on PRAM set

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Cases</th>
<th>Sens (BL)</th>
<th>Spec (BL)</th>
<th>Acc (BL)</th>
<th>Auc (BL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>147</td>
<td>88 (73)</td>
<td>71 (70)</td>
<td>89 (72)</td>
<td>97 (79)</td>
</tr>
<tr>
<td>J48</td>
<td>147</td>
<td>93 (71)</td>
<td>96 (57)</td>
<td>95 (65)</td>
<td>98 (59)</td>
</tr>
<tr>
<td>NBT</td>
<td>147</td>
<td>86 (72)</td>
<td>92 (65)</td>
<td>89 (69)</td>
<td>96 (73)</td>
</tr>
<tr>
<td>(LWL_{NB})</td>
<td>147</td>
<td>90 (73)</td>
<td>88 (70)</td>
<td>89 (72)</td>
<td>96 (78)</td>
</tr>
</tbody>
</table>
Two Set Approach – Non-PRAM Set

- Much bigger variation among classifiers

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Cases</th>
<th>Sens (BL)</th>
<th>Spec (BL)</th>
<th>Acc (BL)</th>
<th>Auc (BL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>206</td>
<td>74 (73)</td>
<td>59 (70)</td>
<td>68 (72)</td>
<td>73 (79)</td>
</tr>
<tr>
<td>J48</td>
<td>206</td>
<td>90 (71)</td>
<td>53 (57)</td>
<td>75 (65)</td>
<td>78 (59)</td>
</tr>
<tr>
<td>NBT</td>
<td>206</td>
<td>74 (72)</td>
<td>51 (65)</td>
<td>65 (69)</td>
<td>69 (73)</td>
</tr>
<tr>
<td>LWL_{NB}</td>
<td>206</td>
<td>76 (73)</td>
<td>60 (70)</td>
<td>69 (72)</td>
<td>71 (78)</td>
</tr>
</tbody>
</table>
Ongoing Work

- Aiming to improve results on the Non-PRAM set
 - In particular focusing on methods to improve Specificity
 - Clustering, Automatic and Expert Feature Selection
 - Contextual Normalization

- Implementation of Meta-Classifier
 - Simplest based on presence/absence of PRAM values
 - May also consider voting and ranking mechanisms
Conclusions

- Retrospectively collected clinical data provides many difficulties for data mining and machine learning.
- Our approach has been to apply Secondary Knowledge Sources (PRAM) to preprocess data for classification.
- Employ a two set approach based on concept representation for data partitioning.
- Approach will be tested on new data that is prospectively collected in ED.

To learn more about the research: http://www.mobiledss.uottawa.ca