Providing Decision Support
Anytime and Anywhere:
MET System Experience

Wojtek Michalowski
University of Ottawa, Canada

Roman Slowinski, Szymon Wilk
Poznan University of Technology, Poland
Outline

- Decision support *anytime and anywhere*
- Computer in a pocket
- Classical DSS design
- New architecture for *anytime and anywhere* DSS
- Mobile Emergency Triage
- Discussion
Providing Decision Support
Anytime and Anywhere

- Decision support is needed when a decision problem arises
 - This calls for use of computing devices that are more handy than desktop computers and that can work offline

- Decision support is required for complex problems with sophisticated solution strategies (e.g. triage support and clinical caremap)
 - This calls for system’s design that allows for versatility and easy adjustment to problem on hand

- Support *anytime and anywhere* – available on demand for a class of decision issues of diversified complexity
Computer in a Pocket

Mobile devices with “lean” computing capabilities (notebooks, tablets, handhelds, cell phones)

- **Issues**
 - Diversity of platforms
 - Diversity of decision making settings (the same system may be used in doctor’s office and an ambulance)

- **Solution**
 - Versatile decision support system that can be accessed on different mobile platforms and can support a range of decision issues
Classical DSS Design

- Sprague (1980)
System’s Architecture for Classical DSS

☐ Stand-alone
 ■ Functionality confined to a single system

☐ Client-server
 ■ Functionality distributed between powerful server and "thin"client(s)
 □ Client acts as a terminal hosting interface subsystem
 □ Server manages dialog with a user and hosts database and model subsystems
 ■ Typical example: web-based DSS
Issues with Classical DSS Architecture

- Requires fairly “strong” computing platform
 - But stand alone system is not feasible for many decision situations

- Requires strong and stable connection
 - But "thin" client – server system is not feasible for many decision environments

- Requires uniform platform specifications for an interface
 - But hard-coding interface into a DSS is not feasible for many cross-platform implementations
Postulates

- If computing platform is not powerful enough, a DSS should be “decomposed” into appropriate executable components.

- If a connection is not stable or constant, a "thin" client still should be able to operate and provide support.

- If computing platforms are heterogeneous, an interface should be adaptable to changing requirements.
Our Solution

- New architecture: extended client-server paradigm
 - Client performs some tasks of a server while there is no connectivity

- Model-based interface design
New Architecture – Server

- Interface model
- Decision model
- Solver model

Problem subsystem

Solver subsystem

Database subsystem

Synchronized with a client database

Builder

Integrator

From a client

To a client

Platform subsystem

Interface subsystem
New Architecture – Client

- Problem subsystem Jr.
- Solver subsystem Jr.
- Interface subsystem Jr.
- Database subsystem Jr.

From a server

Executor

To a server

Synchronized with a server database
MET – Mobile Emergency Triage

- Clinical support system to be used by the Emergency Department medical personnel for triage of patients with acute pain condition

- Developed as a flexible DSS that can be accessed anywhere and anytime and used to support medical decision making with regards to a heterogeneous set of clinical decision problems (abdominal pain, scrotal pain, hip pain, etc)

- Designed according to an extended client – server architecture. Client component can run on a desktop computer, a tablet computer, a handheld, and a mobile phone
MET Server

Problem subsystem
- Abdominal pain
- Scrotal pain
- Hip pain

Solver subsystem
- Heuristic classifier

Platform subsystem
- Cell phone
- Handheld
- Desktop

Builder

Integrator

Interface subsystem
- Pictogram editor
- List editor
- Numeric editor

Patients’ database
Synchronized with a client database
MET Client – Cell Phone

- Clinical decision rules
- Heuristic classifier
- Pictogram editor...

Executor (Symbian OS)
MET Client – Handheld

- Clinical decision rules
- Heuristic classifier
- Pictogram editor...

Executor (PalmOS)

- Problem subsystem Jr.
- Solver subsystem Jr.
- Interface subsystem Jr.
- Database subsystem Jr.
MET Client – Desktop

- Clinical decision rules
- Heuristic classifier
- Pictogram editor...

Problem subsystem Jr.
Solver subsystem Jr.
Interface subsystem Jr.
Database subsystem Jr.

Executor (Mac OS X)
Discussion

- Possibility to develop a versatile DSS (clinical system for complete patient management from triage to discharge)

- Flexibility in receiving decision support (irrespective of a decision situation and a decision environment)

- Ability to develop new theoretical model of the DSS design (to support wide range of clinical problems of varying complexity)

- Ability to deliver cross-platform DSS implementation (system "learns" about a platform and performs self-adjustment to its specifications)
Acknowledgements

Rhonda Correll, Research Institute, CHEO
Ken Farion, Division of Emergency Medicine, CHEO
Greg Forestell, Information Services, CHEO
Joanne Ross, Information Services, CHEO
John Pike, Division of Urology, CHEO
Steven Rubin, Division of Surgery, CHEO

Mathieu Chiasson, MET Research Team
Nataliya Milman, MET Research Team
Bernard Plouffe, MET Research Team

AppForge MobileVB
iAnywhere Studio